## НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР "КУРЧАТОВСКИЙ ИНСТИТУТ" ИНСТИТУТ ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ

имени А.И.Алиханова

на правах рукописи

#### НИКИТЕНКО АЛЕКСАНДР НИКОЛАЕВИЧ

# ПОИСКИ ХИГГСОВСКИХ БОЗОНОВ ВНЕ РАМОК СТАНДАРТНОЙ МОДЕЛИ НА БОЛЬШОМ АДРОННОМ КОЛЛАЙДЕРЕ

Специальность 01.04.23 - Физика высоких энергий

#### АВТОРЕФЕРАТ ДИССЕРТАЦИИ

на соискание ученой степени доктора физико-математических наук

2019

Работа выполнена в ФГБУ Институт теоретической и эксперимнтальной физики имени А.И. Алиханова НИЦ «Курчатовский институт», г. Москва.

Официальные оппоненты:

#### Казаков Дмитрий Игоревич

доктор физико-математических наук, профессор, член-корреспондент РАН, директор Лаборатории теоретической физики ОИЯИ

#### Образцов Владимир Федорович

доктор физико-математических наук, член-корреспондент РАН, начальник лаборатории НИЦ «Курчатовский институт» - ИФВЭ

#### Федин Олег Львович

доктор физико-математических наук, руководитель Отделения физики высоких энергий НИЦ «Курчатовский институт» - ПИЯФ

Ведущая организация:

НИИ ядерной физики МГУ

Защита состоится 10 декабря 2019 г. в 11 часов на заседании диссертационного совета Д 201.002.01 при НИЦ «Курчатовский институт» - ИТЭФ по адресу 117218, г. Москва, д. 25

С диссертацией можно ознакомится в библиотеке НИЦ «Курчатовский институт» - ИТЭФ и на сайте института www.itep.ru

Автореферат разослан 8 ноября 2019 года.

Учёный секретарь диссертационного совета канд. физ.-мат. наук В.В. Васильев

#### Общая характеристика работы

Актуальность темы исследования. Стандартная Модель фундаментальных взаимодействий [1–3], дополненная Brout–Englert–Higgs механизмом возникновения масс калибровочных бозонов и фермионов [4–9], является хорошо установленной теорией, объясняющей большинство экспериментальных данных. Открытие на Большом Адронном Коллайдере (LHC) бозона Хиггса (h) [10–12] с массой 125 ГэВ [13, 14] и с характеристиками, совместимыми с предсказаниями Стандартной Модели [15, 16], стало завершающим триумфом этой модели. Одновременно это дало новый импульс поискам дополнительных бозонов Хиггса, предсказанных в различных моделях Новой Физики, а также поискам нестандартных распадов открытой частицы. Поиски процессов, не описывающихся Стандартной Моделью, связаны с тем, что Стандартная Модель не отвечает на ряд фундаментальных вопросов [17]. Так, она не отвечает на вопрос о происхождение Темной Материи и асимметрии между барионной материей и антиматерией во Вселенной. Несмотря на свой поразительный успех в описании почти всех имеющихся экспериментальных данных, Стандартная Модель рассматривается как эффективная теория, работающая только на доступных в настоящее время энергиях меньше или порядка 1 ТэВ.

Поиски Новой Физики в Хиггсовском секторе можно проводить тремя способами:

• Искать дополнительные бозоны Хиггса. В моделях Суперсимметрии таких как Минимальная Суперсимметричная Модель (MSSM) [18] существует четыре бозона Хиггса, три нейтральных (два СР-четных h и H, и СР-нечетный A) и один заряженный H<sup>±</sup>. NMSSM [19] предсказывает существование шести бозонов Хиггса, трёх СР-четных ( $h_1, h_2, h_3$ ), двух СР-нечетных ( $a_1, a_2$ ) и одного заряженного  $h^{\pm}$ . Хиггсовский сектор в несуперсимметричных моделях, Двух Дублетной (2HDM) [20] и 2HDM+S [21], такой же как в MSSM, и соответственно, в NMSSM.

- Искать моды распада *h*-бозона, отсутствующие в Стандарной Модели. Измерения *h*-бозона в стандартных модах допускают существование около 30% нестандартных мод распадов [15, 16].
- Измерять как можно более точно константы связи *h*-бозона с частицами Стандартной Модели, чтобы заметить расхождение измеренных значений с предсказаниями Стандартной Модели [22–24]. Интерпретация может быть сделана в рамках Эффективной Теории Поля [25].

В диссертации представлены поиски Новой Физики в Хиггсовском секторе, которые проводились на LHC на установке CMS при энергиях протон-протонных столкновений 7, 8 и 13 ТэВ. Были проведены поиски дополнительных бозонов Хиггса с массами как больше, так и меньше массы *h*-бозона 125 ГэВ в модах распада  $\mu\mu$ ,  $\tau\tau$ , *hh* для нейтральных бозонов и  $\tau^{\pm}\nu$  (для заряженного бозона). Также искались моды распада h-бозона,  $h \to \phi_1 \phi_1$  ( $\phi_1$  обозначает легкий псевдоскалярный или скалярный бозон Хиггса) и  $h \rightarrow invisible$  (невидимая мода распада на частицы Темной Материи). Энергии и интенсивности протон-протонных взаимодействий, доступные на LHC, позволили существенно расширить область поиска в пространстве параметров рассматриваемых моделей по сравнению с предыдущими экспериментами на LEP [26-32] и Tevatron [33-35]. Целью работы было обнаружение дополнительных бозонов Хиггса и нестандартных распадов *h*-бозона. В случае необнаружения, задачей было измерение верхних пределов на сечение исследуемых процессов.

Цели и задачи диссертационной работы. Целью диссертационной работы было обнаружение дополнительных бозонов Хиггса и нестандартных распадов *h*-бозона на установке CMS на Большом Адронном Коллайдере с использованием событий протон-протонных соударений, набранных за период с 2010 по 2018 годы при энергиях 7, 8 и 13 ТэВ. В случае необнаружения, задачей было измерение верхних пределов на сечение исследуемых процессов.

**Научная новизна**. Впервые проведён поиск дополнительных бозонов Хиггса в широком интервале масс, недоступном на предыдущих экспериментах на LEP и Tevatron. Открытие бозона Хиггса h с массой 125 ГэВ на LHC позволило впервые провести поиск его нестандартных распадов.

Теоретическая и практическая значимость. Результаты, полученные в диссертации, существенно ограничили пространство свободных параметров в моделях Новой Физики. Это позволило скорректировать программу дальнейших поисков дополнительных бозонов Хиггса и нестандартных распадов *h*-бозона при энергии 14 ТэВ и большей светимости (HL–LHC). Методы отбора событий, измерения фона и выделения потенциального сигнала, разработанные в диссертации, будут применены для дальнейших поисков на HL-LHC.

Положения, выносимые на защиту. Следующие результаты представлены к защите:

- Измерение верхнего предела на сечения процессов gg → φ и gg → bbφ, где φ узкий скалярный резонанс с массой от 90 ГэВ до 3.2 ТэВ, распадающийся на пару *τ*-лептонов. Интерпретация результатов в сценариях MSSM [36] и в hMSSM [37– 39] с использованием теоретических сечений, предоставляемых LHC Higgs Cross Section Working Group [24].
- Измерение верхнего предела на сечения процесса t → H<sup>±</sup>b с распадом H<sup>±</sup> → τ<sup>±</sup>ν в интервале масс заряженного бозона Хиггса 80−160 ГэВ. Интерпретация результатов в сценариях MSSM [36] с использованием теоретических сечений, предоставляемых LHC Higgs Cross Section Working Group [24].
- Измерение верхнего предела на сечение рождения тяжелого бозона Хиггса Н в интервале масс 260-350 ГэВ и его распада на два бозона Хиггса h с массой 125 ГэВ в ττbb̄ конечном состоянии: pp → H → hh → ττbb̄. Интерпретация результатов в сценарии MSSM при малых значениях tanβ [40] с использованием теоретических сечений, предоставляемых LHC Higgs Cross Section Working Group [24].
- Измерение верхнего предела на сечение процесса pp → bbA, A → µµ в интервале масс А-бозона 25-60 ГэВ. Сравнение результатов с предсказаниями "wrong-sign Yukawa coupling" сценария [41, 42] в модели 2HDM.
- Измерение верхнего предела на сечение процесса gg → h → *φ*<sub>1</sub>*φ*<sub>1</sub> → *ττττ*, где *φ*<sub>1</sub> есть легкий псевдоскалярный или ска-лярный бозон Хиггса в интервале масс 4−8 ГэВ.
- Измерение верхнего предела вероятности распада h → invisible, с использованием VV → h (V = Z, W) процесса рождения h-бозона. Интерпретация результатов в Higgs-portal Dark Matter модели [43, 44].

Степень достоверности и апробация результатов. Достоверность результатов исследования подтверждается тем, что результаты, представленные в диссертации, подтверждены в независимых измерениях, выполненных в ATLAS эксперименте на LHC.

Результаты докладывались автором на международных конференциях "LHC Days in Split-2018", "LHC Days in Split-2016", "LHC Days in Split-2014", "SUSY-2014", "RoyalSoc-2014", "Iran-Turkey Joint Conference on LHC Physics-2017", "Iran-Turkey Joint Conference on LHC Physics-2015".

Они также регулярно докладывалить автором на международных Workshops "Higgs Days in Santander", "Physics at TeV colliders", на Workshops "Hamburg Higgs-2014" и "IPMLHC2013" (Iran).

Автор докладывал и обсуждал результаты на Семинарах в RAL (UK), Pavia University (Italy), IPPP (Durham, UK), DESY (Germany), в The Cosener's House, Abingdon (UK).

**Публикации**. Результаты диссертации опубликованы в работах [45– 57]. Все статьи опубликованы в рецензируемых журналах, входящих в список ВАК.

**Личный вклад автора.** Первые экспериментальные работы CMS по поиску распадов  $\phi \to \tau \tau$  и  $H^{\pm} \to \tau^{\pm} \nu$  при энергии LHC 7 ТэВ и распадов  $h \to$  invisible и  $h \to \phi_1 \phi_1 \to \tau \tau \tau \tau$  при энергии 8 ТэВ были инициированы и осуществлялись под руководством автора как координатора первых CMS Higgs-Tau и Higgs-Exotica групп. Методика отбора событий, извлечение возможного сигнала из данных, оценка фона и теоретическая интерпретация результатов были затем применены для анализа данных при энергиях 8 и 13 ТэВ, где автор также принимал активное участие. Работа по поиску распада H  $\to hh \to \tau \tau b \bar{b}$  была инициирована автором, и автор вместе с группой Imperial College (London) участвовал в оптимизации отбора событий и теоретической интерпретации полученных результатов. Поиск легкого бозона Хиггса в канале  $pp \to b \bar{b}A$ ,  $A \to \mu \mu$  на детекторе CMS был предложен автором и проводился совместно с О.Л. Кодоловой (НИЯФ МГУ) и В.Б. Гавриловым (ИТЭФ).

Структура и объем диссертации. Диссертация состоит из Введения, основной части (девять глав), Заключения, благодарностей и списка литературы. Общий объем диссертации 145 страниц, включая 65 рисунков, 17 таблиц. Список литературы содержит 330 наименований.

### Содержание работы

**Во Введении** (Глава 1) дается краткая характеристика исследований. Обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, формулируются цели, ставятся задачи работы, излагаются научная новизна и практическая значимость представляемой работы.

В Главе 2 даётся краткий теоретико-феноменологический обзор процессов, поиск которых представлен в диссертации. Представлены такие модели, как MSSM, hMSSM, NMSSM, 2HDM, Higgs-portal Dark Matter.

**Глава 3** кратко описывает CMS детектор. CMS детектор показан на Рис.1. Поперечный разрез детектора в плоскости X-Y показан на Рис.2.



Рис. 1: СМЅ детектор.

Основная часть детектора CMS, которая определяет всю концепцию геометрии, это сверхпроводящий соленоид 13 метров в длину и 6 метров в диаметре, который даёт аксиальное магнитное поле 3.8 Тесла. В объёме, занимаемом магнитным полем внутри соленоида, расположены различные системы регистрации частиц. Траектории заряженных частиц измеряются силиконовыми пиксельным и стриповым детекторами (трекер), покрывающими  $0 \le \phi \le 2\pi$  по азимуту и  $|\eta| < 2.5$  по псевдо-быстроте. Трекерный объём окружает электромагнитный калориметер (ECAL), сделанный из кристаллов вольфромата свинца. Он состоит из центральной области  $|\eta| < 1.48$  и двух передних обла-



Рис. 2: Поперечный разрез CMS детектора в плоскости X-Y.

стей, достигающих  $|\eta| = 3$ . Свинцовый и силиконово-стриповый детекторы (preshower) расположены перед передними частями электромагнитного калориметра. Медный и сцинтилляционный адронный калориметер окружает ECAL и покрывает область  $|\eta| < 3$ . Стальной передний калориметер с кварцевыми файберами, считываемыми фотоумножителями, расширяет калориметрическую систему до  $|\eta| = 5$ . Мюоны идентифицируются в газово-ионизационных детекторах, вставленных в стальное ярмо снаружи магнитного соленоида. Мюонный детектор почти герметичен, что позволяет проводить измерение баланса энергии в плоскости, перпендикулярной направлению пучков.

**В Главе 4** представлен поиск заряженного бозона Хиггса, распадающегося на  $\tau$ -лептон и нейтрино. Использовались данные при энергии LHC 7 TeB ( $\simeq 2$  fb<sup>-1</sup>), 8 TeB ( $\simeq 20$  fb<sup>-1</sup>) и 13 TэB ( $\simeq 36$  fb<sup>-1</sup>).

Для первого анализа при энергии 7 ТэВ [47] были разработаны оригинальные методы оценки доминирующих фонов с использованием данных. В частности, для оценки фона от парного и одиночного рождения top-кварка использовались события с мюоном вместо  $\tau$ -лептона в конечном состоянии, и мюон был затем заменён смоделированным  $\tau$ -лептоном. Фон от многоструйных событий оценивался с использованием многоструйных событий с такими же отборами, как и для отбора сигнала, но без применения изоляции для идентификации адронных распадов  $\tau$ -лептона. К этим событиям применялась вероятность изоляции, измеренная по многоструйным событиям, с другими критериями отбора на недостающую поперечную энергию и угол между поперечным импульсом  $\tau$  и недостающей энергией. Эти методы были затем использованы при анализе данных при энергиях 8 и

13 ТэВ.

В результате анализа данных при энергии 7 ТэВ был измерен верхний предел на вероятность распада  $t \to b \mathrm{H}^{\pm}$  с последующим распадом  $\mathrm{H}^{\pm} \to \tau^{\pm} \nu_{\tau}$  в интервале масс заряженного бозона 80-160 ГэВ,  $\mathcal{B}(t \to b \mathrm{H}^{\pm})\mathcal{B}(\mathrm{H}^{\pm} \to \tau^{\pm} \nu_{\tau})$  от 4 до 2%, соответственно.

Увеличение энергии LHC и интегральной светимости позволило существенно улучшить верхний предел на  $\mathcal{B}(t \to bH^{\pm})\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$  и начать исследовать область более высоких масс заряженного бозона Хиггса. Так, при энергии 8 ТэВ предел на  $\mathcal{B}(t \to bH^{\pm})\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$  уже понизился до 1.2-0.15% в интервале масс 80-160 ГэВ, и был измерен верхний предел на сечение  $\sigma_{H^{\pm}}\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau}) = 0.38$ -0.025 pb в области масс, сответственно 180-600 ГэВ [48]. Анализ данных при энергии LHC 13 ТэВ [49] поставил ещё более сильные ограничения на  $\mathcal{B}(t \to bH^{\pm})\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau}) = 0.36$ -0.08% в массовом диапазоне 80-160 ГэВ и расширил область измерения сечения  $\sigma_{H^{\pm}}\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$  до массы 3 ТэВ. Был также измерен верхний предел на сечение  $\sigma_{H^{\pm}}\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$  до массы 3 ТэВ. Был также измерен верхний предел на сечение  $\sigma_{H^{\pm}}\mathcal{B}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$  в области промежуточных масс 165-175 ГэВ. Для всех анализов была проведена интерпретация результатов в рамках модели MSSM и сделано заключение, что заряженный бозон Хиггса с массой меньше 160 ГэВ исключен в этой модели.

На Рис.3 слева показан верхний предел на  $\sigma_{\mathrm{H}^{\pm}}\mathcal{B}(\mathrm{H}^{\pm} \to \tau^{\pm}\nu_{\tau})$ , измеренный при энергии LHC 13 ТэВ для интегральной светимости  $\simeq 36$  fb<sup>-1</sup>. На том же рисунке справа показана интерпретация результатов измерений в модели MSSM в плоскости параметров  $m_{\mathrm{H}^{\pm}}$ -tan  $\beta$ .

**В** Главе 5 описан поиск распада на пару  $\tau$ -лептонов дополнительного, нейтрального бозона Хиггса (скалярного или псевдоскалярного) с массой от 90 ГэВ до 3.2 ТэВ. Такой бозон предсказывается, например, в модели MSSM, где он рождается при взаимодействии двух глюонов или в сопровождении двух bottom-кварков. Анализировались данные при энергии LHC 7 ТэВ (36 pb<sup>-1</sup>), 8 ТэВ (20 fb<sup>-1</sup>) и 13 ТэВ (36 fb<sup>-1</sup>).

В первом анализе при энергии 7 ТэВ [50] были разработаны методы отбора событий и определения фонов, которые потом использовались при анализах с данными, набранными при энергии 8 и 13 ТэВ. Так, доминирующий фон от распада Z-бозона на два  $\tau$ -лептона был оценен с использованием событий распада Z-бозона на два мюона, в которых мюоны были заменены смоделированными  $\tau$ -лептонами. Это позволило уменьшить систематические ошибки, связанные с отборами на



Рис. 3: Наблюдаемое на 95% уровне достоверности ограничение на  $\sigma_{\mathrm{H}^{\pm}}\mathcal{B}(\mathrm{H}^{\pm} \to \tau^{\pm}\nu_{\tau})$  (обозначено черными точками) сравнивается с ожидаемым в предположении только процессов Стандартной Модели (пунктирная линия) для диапазона масс  $\mathrm{H}^{\pm}$  от 80 GeV до 3 TeV (слева), и то же ограничение интерпретировано в плоскости MSSM параметров  $m_{\mathrm{H}^{+}}$ —tan  $\beta$  для MSSM  $m_{\mathrm{h}}^{\mathrm{mod}-}$  сценария (справа). Зеленым (желтым) отмечено одно (два ) стандартных отклонения от ожидаемой величины. Слева - горизонтальная ось имеет линейный масштаб в интервале 80 до 180 ГэВ и логарифмический для величин больше  $m_{\mathrm{H}^{\pm}}$ . Справа – область ниже красной линии исключена в предположении, что наблюдаемый нейтральный бозон Хиггса – это легкий СР-четный бозон Хиггса с массой 125 ± 3 GeV, где погрешность – это теоретическая погрешность в расчете массы.

адронные струи и недостающую поперечную энергию. Фон от многоструйных событий в конечное состояние с электроном или мюоном и  $\tau$ -струёй определялся из данных, в которых лептон и  $\tau$ -струя имеют одинаковый знак заряда и требование на изоляцию лептона не такое сильное, как для отбора сигнала. По этим событиям измерялась форма эффективной массы двух  $\tau$ -лептонов в сигнальной области. Для нормировки использовалось число событий с одинаковым зарядом лептона и  $\tau$ -струй в сигнальной области и отношение чисел событий с одинаковым и разным зарядом и неизолированным лептоном. Фон от рождения W-бозона в сопровождении адронных струй определялся в контрольной области с большой недостающей энергией и пропагировался в сигнальную область с использованием моделирования.

При анализе данных на 8 и 13 ТэВ [51, 52] были добавлены события с двумя  $\tau$ -струями. Это сильно увеличило чувствительнось поиска в области больших масс. Фон от многоструйных событий для этой категории также определялся из данных с использованием событий с менее сильной изоляцией двух  $\tau$ -струй разного знака. Чувствительность поиска при энергиях 8 и 13 ТэВ была таже увеличена разделением событий на две категории - с присутствием *b*-струи и без *b*-струи.

При анализе 13 ТэВ данных было использовано next-to-leading order моделирование сигнала, в результате чего было отменено veto дополнительных адронных струй в событии, поскольку, как показало моделирование, оно сильно уменьшает эффективность отбора сигнала. Увеличение энергии LHC с 7 ТэВ до 8 и затем до 13 ТэВ и увеличение интегральной светимости позволило существенно расширить область масс для поиска дополнительного бозона Хиггса. Так, если при энергии 7 ТэВ исследуемый интервал масс был 90-500 ГэВ, то при энергии 8 ТэВ он расширился до 1000 ТэВ, а при энергии 13 ТэВ стал 90-3200 ГэВ. Были поставлены следующие верхние пределы на сечение рождения одиночного, узкого резонанса и его распада на пару *т*-лептонов. Для рождения при столкновении двух глюонов верхние пределы составляют 18 pb при массе 90 ГэВ и 3.5 fb при массе 3.2 ТэВ. Для рождения с двумя *b*-кварками - это 15 pb для массы 90 ГэВ и 2.5 fb - для массы 3.2 ТэВ. Анализ результатов был также проведён в рамках модели MSSM. Была определена область в двумерной плоскости параметров  $m_{\rm A}$ -tan  $\beta$ , исключенная в результате измерений.

На Рис.4 показаны верхние пределы на сечение рождения одиночного, узкого резонанса в процессе  $gg \to \phi$  (слева) и в процессе  $b\bar{b}\phi$  (справа) и его распада на пару  $\tau$ -лептонов, измеренные при энергии LHC 13 ТэВ для интегральной светимости  $\simeq 36~{\rm fb}^{-1}$ . На Рис.5 показана интерпретация результатов измерений в модели MSSM в сценарии  $m_{\rm h}^{\rm mod+}$  (слева) и в модели hMSSM (справа) в плоскости параметров  $m_{\rm A}$ -tan  $\beta$ .



Рис. 4: Ожидаемые и наблюдаемые верхние пределы (на 95% уровне достоверности) для сечения рождения одиночного узкого резонанса,  $\phi$ , с массой между 90 ГэВ и 3.2 ТэВ в конечном состоянии  $\tau\tau$  (слева) через слияние глюонов (gg $\phi$ ) и (справа) в ассоциации с в кварками (bb $\phi$ ). Ожидаемая медиана предела исключения показана пунктирной линией. Темно-зеленая и яркая желтая полосы указывают на 68 и 95% доверительные интервалы для ожидаемого предела исключения. Черные точки соответствуют наблюдаемым пределам. В левой панели – ожидаемые пределы исключения для тех случаев, когда (синяя непрерывная линия) только b-кварк и (красная непрерывная линия) только top-кварк учитываются в фермионной петле. Слева от пунктирной вертикальной линии два разных предположения приводят к видимым различиям в ожидаемых пределах исключения.

В Главе 6 представлен поиск распада тяжелого нейтрального бозона Хиггса, который распадается на два *h*-бозона с массой 125 ГэВ каждый [53]. Был исследован массовый интервал между двумя массами *h*-бозона и двумя массами top-кварка. Нижняя граница интервала является кинематической границей распада. Для массы выше массы двух top-кварков доминирующей модой распада в MSSM является распад на два top-кварка.



Рис. 5: Наблюдаемые и ожидаемые на 95% уровне достоверности исключённые области (слева) в MSSM  $m_{\rm h}^{\rm mod+}$  сценарии и (справа) в сценарии hMSSM. Ожидаемая медиана показана пунктирной черной линией. Темная и ярко-серая полосы указывают 68 и 95% доверительные интервалы для ожидаемого исключения. Наблюдаемая исключённая область обозначается синим цветом. Для сценария  $m_{\rm h}^{\rm mod+}$  те части пространства параметров, где  $m_{\rm h}$  отклоняется более чем на ±3 ГэВ от массы наблюдаемого бозона Хиггса 125 ГэВ, обозначены красной штриховкой.

Искались конечные состояния, в которых один *h*-бозон распадается на два *т*-лептона, а второй *h*-бозон распадается на два *b*-кварка. При этом два *т*-лептона отбирались в конечных состояниях с мюоном и  $\tau$ -струёй, электроном и  $\tau$ -струёй и с двумя  $\tau$ -струями. В событиях требовалось присутствие по крайней мере двух адронных струй. События разделялись на группы с двумя таггированными *b*-струями, одной *b*-струёй или без *b*-струй, что увеличивает чувствительность поиска. Доминирующими фонами являются Z-бозон, рождающийся в ассоциации с адронными струями, парное рождение top-кварков, рождение W-бозона со струями и многоструйные события. Фон от парного рождения top-кварков определялся из моделирования и был проверен по данным с электроном и мюоном и *b*-струями. Остальные фоны определялись из данных с использованием тех же методов, что применялись в поиске распада, описанного в пятой главе. При поисках сигнала отбирались события, в которых эффективная масса двух  $\tau$ -лептонов и масса двух струй была близка к массе h-бозона 125 ГэВ. Сигнал определялся в распределении по массе четырёх частиц - двух т-лептонов и двух струй. При анализе использовались данные при энергии 8 ТэВ ( $\simeq 20 \text{ fb}^{-1}$ ).

Был измерен верхний предел на сечение процесса и проведена интерпретация в рамках так называемого "low tan  $\beta$ " сценария MSSM [40]. Область исключенных значений  $m_{\rm A}$ -tan  $\beta$  в таком сценарии для комбинации измерений H  $\rightarrow hh \rightarrow bb\tau\tau$  и A  $\rightarrow Zh \rightarrow \ell\ell\tau\tau$  [53] показана на Рис.6. Исключённые значения ограничиваются массой  $m_{\rm A} \simeq 350$ ГэВ, так как выше этой массы становится кинематически разрешен распад A на два top-кварка.

Глава 7 суммирует интерпретацию в рамках модели MSSM результатов по поиску дополнительных бозонов Хиггса, представленных в главах 4, 5 и 6. Со времени открытия *h*-бозона возник следующий вопрос - какой из двух скалярных бозонов в MSSM открыт, little h-бозон или capital H-бозон ? Ответ на этот вопрос дали результаты поиска заряженного бозона Хиггса H<sup>±</sup> в моде распада  $\tau \nu$ , представленные в диссертации. Результаты показали, что заряженный бозон Хиггса с массой меньше 160 ГэВ исключен при всех значениях tan $\beta$ . Из связи масс заряженного бозона и псевдоскалярного нейтрального бозона следует, что псевдоскалярный бозон с массой  $\leq 140$  ГэВ также исключён. Тогда из этого следует, что открытый бозон Хиггса с массой 125 ГэВ является little h-бозоном. Осталась только очень малая область MSSM параметров в сценарии  $M_H^{125}$  [58], в которой открытый бозон Хиггса является capital H-бозоном. Измерения *h*-бозона [15, 16]





Рис. 6: Область исключения на уровне достоверности 95% для значений  $m_{\rm A}$ -tan  $\beta$  в "low tan  $\beta$ " сценарии MSSM [40] для комбинации измерений H  $\rightarrow hh \rightarrow bb\tau\tau$  и A  $\rightarrow Zh \rightarrow \ell\ell\tau\tau$  каналов. Область, показанная голубым цветом, исключена по результатам данного анализа. Штриховая линия и серые области показывают ожидаемые пределы по исключению с относительной неопределенностью  $\pm 1\sigma$  и  $\pm 2\sigma$ . Область, обозначенная красными линиями в нижнем левом углу, показывает область, которая исключена известной массой h-бозона – 125 ГэВ. Исключённые значения ограничиваются массой  $m_A \simeq 350$  ГэВ, так как выше этой массы становится кинематически разрешен распад A на два top-кварка.

позволяют сильно ограничить область параметров MSSM в предположении, что он явлается little h-бозоном. Так, в соответствии с измерениями, масса псевдоскаларного бозона A должна быть больше чем  $\simeq 500$  ГэВ при всех значениях tan  $\beta$ . Для дальнейших поисков дополнительных бозонов Хиггса в MSSM на HL-LHC это означает, что надо продолжать поиски тяжелого нейтрального бозона Хиггса, распадающегося на пару  $\tau$ -лептонов. Необходимо начать поиски распадов тяжелого бозона Хиггса на пару top-кварков (ATLAS уже опубликовал такой анализ при 8 ТэВ) и распадов на суперсимметричные частицы.

В Главе 8 представлен поиск распада лёгкого бозона Хиггса в интервале масс 25-60 ГэВ, рождающегося в сопровождении двух *b*кварков и распадающегося на пару мюонов. Этот процесс имеет большие сечения в модели 2HDM в сценарии, когда константа связи псевдоскалярного бозона с *b*-кварками меняет знак по сравнению со знаком в Стандартной Модели (Wrong Sign Yukawa Coupling scenario). Несмотря на то, что распад в два  $\tau$ -лептона имеет гораздо большую вероятность, распад в два мюона имеет ряд преимуществ с экспериментальной точки зрения. Так, разрешение по массе двух лептонов гораздо выше в мюонной моде. Также, двухмюонная мода распада имеет существенно большую эффективность триггера и лептонной идентификации.

В представленном анализе [54] использовались данные ( $\simeq 20 \text{ fb}^{-1}$ ) при энергии LHC 8 ТэВ. Отбирались события с двумя мюонами и по крайней мере одной *b*-таггированной струёй. Для подавления фона от парного рождения top-кварков требовалось, чтобы в событиях была малая недостающая энергия. Фон от парного рождения top-кварков и процесса Drell-Yan со струями определялся из моделирования и был проверен в контрольных областях двухмюонной массы 12-25 ГэВ и 60-70 ГэВ. Также сравнивалось распределение двухэлектронной массы между данными и моделированием для событий с теми же критериями отборов, но с двумя электронами вместо мюонов. Сравнивались результаты с использованием двух альтернативных алгоритмов регистрации и измерения адронных струй.

Как результат, измерен верхний предел на сечение исследуемого процесса  $\sigma(pp \rightarrow b\overline{b}A) \mathcal{B}(A \rightarrow \mu\mu)$ , который оказался сравнимым с результатом по  $\tau$ -лептонной моде. Проведено сравнение верхнего предела на сечение с предсказаниями Wrong Sign Yukawa Coupling сценария модели 2HDM и сделано заключение, что этот сценарий исключен для масс псевдоскалярного бозона в исследуемом интервале 25-60 ГэВ.

На Рис.7 показан верхний предел на сечение  $\sigma(pp \rightarrow b\overline{b}A) \mathcal{B}(A \rightarrow \mu\mu)$  как функция  $m_A$ , измеренный при энергии LHC 8 ТэВ для интегральной светимости  $\simeq 20$  fb<sup>-1</sup>.



Рис. 7: ожидаемый и измеренный верхние пределы на уровне достоверности 95% для  $\sigma(pp \rightarrow b\overline{b}A) \mathcal{B}(A \rightarrow \mu\mu)$  как функция  $m_A$ . Пустыми кружками показаны пределы, полученные в анализе CMS конечного состояния  $A \rightarrow \tau\tau$  [59], переведенные в пределы на конечное состояние  $A \rightarrow \mu\mu$ 

Глава 9 описывает поиск нестандартного распада h-бозона на два лёгких скалярных или псевдоскалярных нейтральных бозона [55]. Такой распад возможен, например, в модели NMSSM или 2HDM. Искались распады, в которых каждый из легких бозонов распадается на пару  $\tau$ -лептонов. Такое конечное состояние имеет большую вероятность, если масса легкого бозона находится в интервале между двумя массами  $\tau$ -лептона и двумя массами b-кварка. Нижняя граница обусловлена кинематикой. Выше верхней границы массы доминирует распад на два b-кварка. Результаты получены в интервале масс 4-8 ГэВ.

Отбиралась топология, в которой один  $\tau$ -лептон распадается на мюон и пару нейтрино, а второй  $\tau$ -лептон (из распада того же бозона) даёт один трек в конечном состоянии (электрон, мюон или пион) и любое количество нейтральных пионов. Поскольку масса бозона мала по сравнению с массой 125 ГэВ, мюон и трек почти коллинеарны друг другу. При этом две мюон-трек пары разделены на большие углы между собой. Такая топология отбиралась по наличию в событии двух мюон-трек пар, разделённых по азимутальному углу. При этом в каждой паре мюон и трек должны быть разных знаков и мюон-трек пары должны быть изолированными от присутствия других треков. Требовалось, чтобы мюоны из двух пар имели одинаковый знак. При таких отборах вклад фона от событий Drell-Yan, top-кварк парного рождения и парного рождения Z и W-бозонов становится пренебрежимо малым. Единственным фоном остаётся многоструйное рождение при доминирующем процессе рождения *b*-кварк пар. Сигнал определялся из фита двумерного распределения по массе мюон-трек пар. При этом форма фона измерялась из данных с использованием событий, в которых одна мюон-трек пара неизолированна.

Как результат, измерены верхние пределы на сечение процесса с распадом h-бозона на два легких бозона, каждый из которых распадается на пару  $\tau$ -лептонов. Представлено сравнение измерений с теоретическими расчетами в моделях MSSM и 2HDM, выполненными группой Stefano Moretti.

На Рис.8 показано значение верхнего предела на  $(\sigma \mathcal{B})_{sig}$  на уровне достоверности 95% вместе с ожидаемыми пределами в рамках нулевой гипотезы для значений  $m_{\phi_1}$  в диапазоне от 4 до 8 ГэВ.

**В Главе 10** представлен поиск распада h-бозона в невидимой моде на частицы "Тёмной Материи"(Dark Matter). Такая мода распада существует в так называемой Higgs-portal Dark Matter модели, в моделях MSSM и NMSSM. Отбирались события процесса рождения h-бозона при взаимодействии векторных бозонов Z и W (VBF) как наиболее чувствительного процесса к поиску этой моды распада.

В событиях требовалось присутствие двух адронных струй, разделённых большим интервалом по полярному углу, и с большой эффективной массой двух струй. Чтобы эффективно подавить фон от многоструйных событий, отбирались события с большой недостающей энергией и малым азимутальным углом между струями. Дополнительно применялось вето событий со струями в центральной части детектора (CJV), что подавляло фон он рождения Z и W-бозонов со струями.

Фон от Z-бозонов определялся из данных с использованием двухмюонных распадов Z-бозона с теми же критериями отбора на струи и



Рис. 8: Наблюдаемые и ожидаемые верхние пределы на  $(\sigma \mathcal{B})_{sig}$  в pb на уровне достоверности 95% в зависимости от  $m_{\phi_1}$ . Полосами отмечены ожидаемые доверительные интервалы  $\pm 1\sigma$  и  $\pm 2\sigma$  относительно ожидаемого предела.

недостающую энергию, что и при отборе сигнала. Моделирование использовалось для пересчета событий в контрольной области фона к числу событий в сигнальной области. Фон от W-бозона определялся тем же методом с использованием распадов W-бозона на лептон и нейтрино, в которых лептон был зарегистрирован в установке. Фон от многоструйных событий определялся из данных так называемым ABCD методом с критериями отбора по недостающей энергии и CJV.

Были проанализированы данные ( $\simeq 20 \text{ fb}^{-1}$ ) при энергии LHC 8 ТэВ и поставлен верхний предел на вероятность распада 0.65 на 95% уровне достоверности [56]. В комбинации с анализом, использующим ассоциированное рождение *h*-бозона с *Z*-бозоном верхний предел составил 0.58. Анализ был продолжен с данными при энергии LHC 13 ТэВ ( $\simeq 36 \text{ fb}^{-1}$ ) и верхний предел был улучшен: 0.35 для VBF рождения и 0.26 для комбинации с *Zh* и *gg*  $\rightarrow$  *h* процессами [57]. Комбинация всех энергий и процессов рождения дала верхний предел 0.19 на 95 % уровне достоверности.

Была проведена интерпретация полученного результата в модели Higgsportal Dark Matter и проведено сравнение с результатами, полученными на подземных экспериментах. Из сравнения ясно, что поиски Dark Matter на LHC в распаде h-бозона более чувствительны, чем в подземных экспериментах при массе Dark Matter частиц меньше 10-20 ГэВ.

Рис.9 (слева) показывает верхний предел на branching fraction распада  $h \rightarrow invisible$  для различных процессов рождения h-бозона, в которых искался этот распад, а также результат для комбинации всех этих процессов рождения при энергии LHC 13 ТэВ и интегральной светимости  $\simeq 36$  fb<sup>-1</sup>. Справа на рисунке показана эволюция измерения с увеличением энергии LHC и верхний предел по комбинации всех энергий и процессов рождения, в которых искался этот распад.

Рис.10 показывает интерпретацию измеренного верхнего предела на branching fraction распада  $h \rightarrow invisible$  в рамках модели Higgs-portal Dark Matter. Верхний предел пересчитан на сечение взаимодействия Dark Matter частицы с нуклоном в зависимости от массы Dark Matter частицы и сравнен с результатами подземных экспериментов.

В Заключении диссертации суммируются следующие основные результаты и выводы:

• Заряженный бозон Хиггса с массой ≤ 160 ГэВ исключён в рамках модели MSSM. Это означает, что открытый *h*-



Рис. 9: Слева: наблюдаемые и ожидаемые на 95% уровне достоверности верхние пределы на  $(\sigma/\sigma_{\rm SM}) \mathcal{B}(h \to \text{inv})$  для VBF,  $Z(\ell\ell)h$ , V(qq')hи механизма рождения ggh, и для их комбинаций с учетом массы бозона Хиггса, предсказываемого Стандартной моделью, равной 125.09 GeV. Справа: наблюдаемые и ожидаемые на 95% уровне достоверности верхние пределы на  $(\sigma/\sigma_{\rm SM}) \mathcal{B}(h \to \text{inv})$  для объединенных результатов выборок 7+8, 13 TeV и их комбинации, в предположении сечения рождения бозона Хиггса с массой 125.09 GeV, предсказанного Стандартной Моделью.



Рис. 10: Верхние пределы на 90% уровне достоверности на сечение спиново-независимого рассеяния частицы темной материи и нуклона in Higgs-portal models, в предположении, что частица темной материи - скаляр (сплошная оранжевая линия) или фермион (пунктирная красная линия). Пределы вычисляются как функции от  $m_{\chi}$ . Сделано сравнение с результатами измерения пределов в экспериментах XENON1T [60], LUX [61], PandaX-II [62], CDMSlite [63], CRESST-II [64] и CDEX-10 [65].

бозон с массой 125 ГэВ является little h-бозоном. При этом интерпретация измерения сечений *h*-бозона позволяет сделать вывод, что масса нейтрального псевдоскалярного бозона Хиггса A (а следовательно и capital H-бозона) в MSSM должна быть больше чем  $\simeq 500$  ГэВ. Поэтому надо продолжить поиски распадов  $H/A \to \tau \tau$ , чтобы открыть бозон Хиггса в области больших масс или исключить область больших масс и больших значений  $tan\beta$ . Поиски распадов  $H \to hh$  и  $A \to Zh$  становятся при этом менее приоритетными, поскольку они имеют большие сечения только в области масс  $\leq 400 \ \Gamma$ эВ. Вместо этого, надо начать поиски распадов  $\mathbf{H} \to t\bar{t}$  и  $\mathbf{H}/A \to \tilde{\chi}\tilde{\chi}, \, \mathbf{H}^{\pm} \to \tilde{\chi}^0 \tilde{\chi}^{\pm}$ , которые в MSSM имеют достаточно большие сечения для больших масс и малых и промежуточных значениях  $tan\beta$ . Заметим, что интерпретация  $h \equiv H$  пока ещё остаётся в очень ограниченной области параметров MSSM и может быть исключена или подтверждена поисками распада  $\mathrm{H}^{\pm} \to Wh$ .

- Так называемый Wrong Sign Yukawa Coupling сценарий в рамках модели 2HDM исключен для масс псевдоскалярного бозона 25 ГэВ<  $m_A < m_h/2$  в результате поиска процесса  $pp \rightarrow b\bar{b}A$ ,  $A \rightarrow \mu\mu$ ,  $\tau\tau$ . Полностью этот сценарий может быть исключён или открыт, когда измерение сечений *h*-бозона достигнет точности  $\simeq 5$ %. Такая точность может быть достигнута на HL-LHC при интегральной светимости 3 fb<sup>-1</sup>.
- Измеренные верхние пределы на сечения распадов h → φ<sub>1</sub>φ<sub>1</sub> (и, в частности, распада в 4т конечном состоянии, представленного в диссертации) уже сравнимы с максимально возможными сечениями, предсказываемыми в моделях NMSSM и 2HDM. Трудной для наблюдения ещё остаётся область масс 2m<sub>b</sub> < m<sub>φ1</sub> <20 ГэВ. Необходимо продолжать поиски этих распадов на HL-LHC. В области масс 2m<sub>b</sub> < m<sub>φ1</sub> <20 ГэВ, где две b-адронные струи из распада φ<sub>1</sub> → bb̄ сливаются в одну, следует попробовать применить специальную технику разделения струй.
- Поиски Dark Matter частиц в распаде  $h \rightarrow invisible$  на LHC и в подземных экспериментах дополняют друг друга, будучи интерпретированы в рамках Higgs-portal Dark Matter. Так, распад  $h \rightarrow invisible$  дает лучшие пределы на сечение взаимодействия частицы с нуклоном в области масс

 $m_{\rm DM} \leq 10\text{-}20\ \Gamma$ эВ. В то же время в области больших масс  $\geq 20\ \Gamma$ эВ подземные эксперименты более чувствительны (конечно, область масс  $m_{\rm DM} > m_h/2$  кинематически недоступна в распаде  $h \rightarrow invisible$ ). Верхний предел на branching fraction BR( $h \rightarrow invisible$ ) < 0.19, полученный в CMS, уже сравним с максимально возможным значением, предсказываемым в MSSM, но ещё не достиг значений, предказываемых в NMSSM ( $\simeq 8\ \%$ ). Необходимо продолжать поиски этого распада на HL-LHC.

## Список литературы

- S. L. Glashow, "Partial Symmetries of Weak Interactions", Nucl. Phys. 22 (1961) 579, doi:10.1016/0029-5582(61)90469-2.
- [2] S. Weinberg, "A Model of Leptons", *Phys. Rev. Lett.* 19 (1967) 1264, doi:10.1103/PhysRevLett.19.1264.
- [3] A. Salam, "Weak and electromagnetic interactions", in *Elementary particle physics: relativistic groups and analyticity*, N. Svartholm, ed., p. 367. Almqvist & Wiksell, Stockholm, 1968. Proceedings of the eigth Nobel symposium.
- [4] F. Englert and R. Brout, "Broken Symmetry and the Mass of Gauge Vector Mesons", *Phys. Rev. Lett.* 13 (1964) 321, doi:10.1103/PhysRevLett.13.321.
- [5] P. W. Higgs, "Broken symmetries, massless particles and gauge fields", *Phys. Lett.* **12** (1964) 132, doi:10.1016/0031-9163(64)91136-9.
- [6] P. W. Higgs, "Broken Symmetries and the Masses of Gauge Bosons", *Phys. Rev. Lett.* 13 (1964) 508, doi:10.1103/PhysRevLett.13.508.
- [7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, "Global Conservation Laws and Massless Particles", *Phys. Rev. Lett.* 13 (1964) 585, doi:10.1103/PhysRevLett.13.585.
- [8] P. W. Higgs, "Spontaneous Symmetry Breakdown without Massless Bosons", *Phys. Rev.* 145 (1966) 1156, doi:10.1103/PhysRev.145.1156.
- T. W. B. Kibble, "Symmetry breaking in non-Abelian gauge theories", *Phys. Rev.* 155 (1967) 1554, doi:10.1103/PhysRev.155.1554.
- [10] ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", *Phys. Lett. B* **716** (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- [11] CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", *Phys. Lett. B* **716**

(2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

- [12] CMS Collaboration, "Observation of a new boson with mass near 125 GeV in pp collisions at  $\sqrt{s} = 7$  and 8 TeV", JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.
- [13] ATLAS, CMS Collaboration, "Combined Measurement of the Higgs Boson Mass in pp Collisions at  $\sqrt{s} = 7$  and 8 TeV with the ATLAS and CMS Experiments", *Phys. Rev. Lett.* **114** (2015) 191803, doi:10.1103/PhysRevLett.114.191803, arXiv:1503.07589.
- [14] CMS Collaboration, "Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at  $\sqrt{s} = 13$  TeV", *JHEP* **11** (2017) 047, doi:10.1007/JHEP11(2017)047, arXiv:1706.09936.
- [15] CMS Collaboration, "Combined measurements of Higgs boson couplings in proton-proton collisions at  $\sqrt{s} = 13$  TeV", Submitted to: Eur. Phys. J. (2018) arXiv:1809.10733.
- [16] ATLAS Collaboration Collaboration, "Combined measurements of Higgs boson production and decay using up to 80 fb<sup>-1</sup> of proton-proton collision data at  $\sqrt{s} = 13$  TeV collected with the ATLAS experiment", Technical Report ATLAS-CONF-2018-031, CERN, Geneva, Jul, 2018.
- [17] D. Kazakov, "Beyond the Standard Model' 17", CERN Yellow Rep. School Proc. 3 (2018) 83-131, doi:10.23730/CYRSP-2018-003.83, arXiv:1807.00148.
- [18] A. Djouadi, "The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model", *Phys. Rept.* 459 (2008) 1-241, doi:10.1016/j.physrep.2007.10.005, arXiv:hep-ph/0503173.
- [19] U. Ellwanger, C. Hugonie, and A. M. Teixeira, "The Next-to-Minimal Supersymmetric Standard Model", *Phys. Rept.* 496 (2010) 1–77, doi:10.1016/j.physrep.2010.07.001, arXiv:0910.1785.
- [20] G. C. Branco et al., "Theory and phenomenology of two-Higgs-doublet models", *Phys. Rept.* 516 (2012) 1, doi:10.1016/j.physrep.2012.02.002, arXiv:1106.0034.

- [21] A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, "Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter", JHEP 11 (2014) 105, doi:10.1007/JHEP11(2014)105, arXiv:1408.2106.
- [22] D. Zeppenfeld, R. Kinnunen, A. Nikitenko, and E. Richter-Was, "Measuring Higgs boson couplings at the CERN LHC", *Phys. Rev.* D 62 (2000) 013009, doi:10.1103/PhysRevD.62.013009, arXiv:hep-ph/0002036.
- M. Duhrssen et al., "Extracting Higgs boson couplings from CERN LHC data", Phys. Rev. D 70 (2004) 113009, doi:10.1103/PhysRevD.70.113009, arXiv:hep-ph/0406323.
- [24] LHC Higgs Cross Section Working Group Collaboration, "Handbook of LHC Higgs Cross Sections: 3. Higgs Properties", doi:10.5170/CERN-2013-004, arXiv:1307.1347.
- [25] LHC Higgs Cross Section Working Group Collaboration, "Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector", doi:10.23731/CYRM-2017-002, arXiv:1610.07922.
- [26] ALEPH Collaboration, "Search for neutral Higgs bosons decaying into four taus at LEP2", JHEP 05 (2010) 049, doi:10.1007/JHEP05(2010)049, arXiv:1003.0705.
- [27] DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches, L3 Collaboration, "Search for neutral MSSM Higgs bosons at LEP", Eur. Phys. J. C 47 (2006) 547, doi:10.1140/epjc/s2006-02569-7, arXiv:hep-ex/0602042.
- [28] OPAL Collaboration, "Search for neutral Higgs boson in CP-conserving and CP-violating MSSM scenarios", Eur. Phys. J. C 37 (2004) 49, doi:10.1140/epjc/s2004-01962-6, arXiv:hep-ex/0406057.
- [29] DELPHI Collaboration, "Higgs boson searches in CP-conserving and CP-violating MSSM scenarios with the DELPHI detector", *Eur. Phys. J. C* 54 (2008) 1, doi:10.1140/epjc/s10052-008-0647-x, arXiv:0801.3586.
  [Erratum: doi:10.1140/epjc/s10052-007-0506-1].

- [30] OPAL Collaboration, "Search for a low mass CP odd Higgs boson in e+ e- collisions with the OPAL detector at LEP-2", Eur. Phys. J. C 27 (2003) 483, doi:10.1140/epjc/s2003-01139-y, arXiv:hep-ex/0209068.
- [31] L3 Collaboration, "Search for an invisibly-decaying Higgs boson at LEP", *Phys. Lett.* B609 (2005) 35-48, doi:10.1016/j.physletb.2005.01.030, arXiv:hep-ex/0501033.
- [32] ALEPH, DELPHI, L3, OPAL, LEP Collaboration, "Search for Charged Higgs bosons: Combined Results Using LEP Data", Eur. Phys. J. C73 (2013) 2463, doi:10.1140/epjc/s10052-013-2463-1, arXiv:1301.6065.
- [33] G. J. Grenier, "Search for supersymmetric charged Higgs bosons at the TeVatron", in SUSY 2007 Proceedings, 15th International Conference on Supersymmetry and Unification of Fundamental Interactions, July 26 - August 1, 2007, Karlsruhe, Germany, pp. 420-425. 2007. arXiv:0710.0853.
- [34] CDF Collaboration, "Search for an Invisible Decaying Higgs Boson in Dilepton Events at CDF", Nucl. Part. Phys. Proc. 273-275 (2016) 2476-2478, doi:10.1016/j.nuclphysbps.2015.09.430.
- [35] Tevatron New Phenomena and Higgs Working Group Collaboration, "Combined cdf and d0 upper limits on mssm higgs boson production in tau-tau final states with up to 2.2 fb-1", arXiv:1003.3363.
- [36] M. Carena et al., "MSSM Higgs boson searches at the LHC: Benchmark scenarios after the discovery of a Higgs-like particle", *Eur. Phys. J. C* **73** (2013) 2552, doi:10.1140/epjc/s10052-013-2552-1, arXiv:1302.7033.
- [37] L. Maiani, A. D. Polosa, and V. Riquer, "Bounds to the Higgs Sector Masses in Minimal Supersymmetry from LHC Data", *Phys. Lett. B* 724 (2013) 274-277, doi:10.1016/j.physletb.2013.06.026, arXiv:1305.2172.
- [38] A. Djouadi et al., "The post-Higgs MSSM scenario: Habemus MSSM?", Eur. Phys. J. C 73 (2013) 2650, doi:10.1140/epjc/s10052-013-2650-0, arXiv:1307.5205.

- [39] A. Djouadi et al., "Fully covering the MSSM Higgs sector at the LHC", JHEP 06 (2015) 168, doi:10.1007/JHEP06(2015)168, arXiv:1502.05653.
- [40] E. Bagnaschi et al., "Benchmark scenarios for low  $\tan \beta$  in the MSSM", Technical Report LHCHXSWG-2015-002, CERN, Geneva, Aug, 2015.
- [41] P. Ferreira, J. F. Gunion, H. E. Haber, and R. Santos, "Probing wrong-sign Yukawa couplings at the LHC and a future linear collider", *Phys. Rev. D* 89 (2014), no. 11, 115003, doi:10.1103/PhysRevD.89.115003, arXiv:1403.4736.
- [42] J. Bernon, J. F. Gunion, Y. Jiang, and S. Kraml, "Light Higgs bosons in two-Higgs-doublet models", *Phys. Rev. D* 91 (2015) 075019, doi:10.1103/PhysRevD.91.075019, arXiv:1412.3385.
- [43] A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon,
  "Implications of LHC searches for Higgs-portal dark matter", *Phys. Lett. B* 709 (2012) 65, doi:10.1016/j.physletb.2012.01.062, arXiv:1112.3299.
- [44] A. Djouadi, A. Falkowski, Y. Mambrini, and J. Quevillon, "Direct detection of Higgs-portal dark matter at the LHC", *Eur. Phys. J. C* 73 (2013) 2455, doi:10.1140/epjc/s10052-013-2455-1, arXiv:1205.3169.
- [45] S. Abdullin et al., "Summary of the CMS potential for the Higgs boson discovery", *Eur. Phys. J. C* **39S2** (2005) 41–61, doi:10.1140/epjcd/s2004-02-003-9.
- [46] CMS Collaboration, "CMS Physics: Technical Design Report, volume II: Physics performance", J. Phys. G34 (2007), no. 6, 995–1579, doi:10.1088/0954-3899/34/6/S01.
- [47] CMS Collaboration, "Search for a light charged Higgs boson in top quark decays in pp collisions at  $\sqrt{s} = 7$  TeV", JHEP **07** (2012) 143, doi:10.1007/JHEP07(2012)143, arXiv:1205.5736.
- [48] CMS Collaboration, "Search for a charged Higgs boson in pp collisions at  $\sqrt{s} = 8$  TeV", JHEP **11** (2015) 018, doi:10.1007/JHEP11(2015)018, arXiv:1508.07774.

- [49] CMS Collaboration, "Search for charged Higgs bosons in the  $H^{\pm} \rightarrow \tau^{\pm}\nu_{\tau}$  decay channel in proton-proton collisions at  $\sqrt{s} = 13$  TeV", *JHEP* **07** (2019) 142, doi:10.1007/JHEP07(2019)142, arXiv:1903.04560.
- [50] CMS Collaboration, "Search for Neutral MSSM Higgs Bosons Decaying to Tau Pairs in pp Collisions at  $\sqrt{s} = 7$  TeV", *Phys. Rev. Lett.* **106** (2011) 231801, doi:10.1103/PhysRevLett.106.231801, arXiv:1104.1619.
- [51] CMS Collaboration, "Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions", JHEP 10 (2014) 160, doi:10.1007/JHEP10(2014)160, arXiv:1408.3316.
- [52] CMS Collaboration, "Search for additional neutral MSSM Higgs bosons in the  $\tau\tau$  final state in proton-proton collisions at  $\sqrt{s} = 13$  TeV", *JHEP* **09** (2018) 007, doi:10.1007/JHEP09(2018)007, arXiv:1803.06553.
- [53] CMS Collaboration, "Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with h → ττ", Phys. Lett. B755 (2016) 217-244, doi:10.1016/j.physletb.2016.01.056, arXiv:1510.01181.
- [54] CMS Collaboration, "Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at  $\sqrt{s} = 8$  TeV", JHEP **11** (2017) 010, doi:10.1007/JHEP11(2017)010, arXiv:1707.07283.
- [55] CMS Collaboration, "Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into  $\tau$  leptons in pp collisions at  $\sqrt{s} = 8$  TeV", JHEP **01** (2016) 079, doi:10.1007/JHEP01(2016)079, arXiv:1510.06534.
- [56] CMS Collaboration, "Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes", *Eur. Phys. J.* C74 (2014) 2980, doi:10.1140/epjc/s10052-014-2980-6, arXiv:1404.1344.
- [57] CMS Collaboration, "Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at  $\sqrt{s} = 13$  TeV", *Phys. Lett. B* **793** (2019) 520–551, doi:10.1016/j.physletb.2019.04.025, arXiv:1809.05937.

- [58] H. Bahl et al., "MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2 and Beyond", arXiv:1808.07542.
- [59] CMS Collaboration, "Search for a Low-Mass Pseudoscalar Higgs Boson Produced in Association with a  $b\bar{b}$  Pair in pp Collisions at  $\sqrt{s} = 8$  TeV", *Phys. Lett. B* **758** (2016) 296-320, doi:10.1016/j.physletb.2016.05.003, arXiv:1511.03610.
- [60] XENON Collaboration, "Dark matter search results from a one ton-year exposure of XENON1T", *Phys. Rev. Lett.* **121** (2018) 111302, doi:10.1103/PhysRevLett.121.111302, arXiv:1805.12562.
- [61] LUX Collaboration, "Results from a search for dark matter in the complete LUX exposure", *Phys. Rev. Lett.* 118 (2017) 021303, doi:10.1103/PhysRevLett.118.021303, arXiv:1608.07648.
- [62] PandaX-II Collaboration, "Dark matter results from first 98.7 days of data from the PandaX-II experiment", *Phys. Rev. Lett.* 117 (2016) 121303, doi:10.1103/PhysRevLett.117.121303, arXiv:1607.07400.
- [63] SuperCDMS Collaboration, "New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment", *Phys. Rev. Lett.* 116 (2016) 071301, doi:10.1103/PhysRevLett.116.071301, arXiv:1509.02448.
- [64] CRESST Collaboration, "Results on light dark matter particles with a low-threshold CRESST-II detector", Eur. Phys. J. C 76 (2016) 25, doi:10.1140/epjc/s10052-016-3877-3, arXiv:1509.01515.
- [65] CDEX Collaboration, "Limits on light weakly interacting massive particles from the first 102.8 kg × day data of the CDEX-10 experiment", *Phys. Rev. Lett.* **120** (2018) 241301, doi:10.1103/PhysRevLett.120.241301, arXiv:1802.09016.